

Titan (Lake) Lander Studies

John Elliott Jet Propulsion Laboratory February 23, 2018

2010 – Decadal Survey Studies

- Decadal Survey studied mission concepts for surface and subsurface exploration of Titan lakes
- Four options studied, with decreasing levels of complexity to investigate missions with a range of costs

General Mission Concept Overview

SGa: To understand the formation and evolution of Titan and its atmosphere

SGb: To study the lake-atmosphere interaction in order to determine the role of Titan's lakes in the methane cycle

SGc: To study the target lake as a laboratory for pre-biotic organic chemistry in both water (or NH3 enriched water) solutions and nonwater solvents

SGd: To understand if Titan has an interior ocean

Option 1 Overview

- Aimed at a flagship-class mission concept
- In-situ elements assumed to be delivered by Orbiter from Saturn orbit
- Design addressed all four areas of scientific interest
 - Atmospheric evolution
 - Atmosphere-lake interaction
 - Lake chemistry
 - Interior structure
- Reaches Kraken Mare after sunset – must relay data through spacecraft in Saturn orbit
- 2 ASRGs on the floater

Option 1 Configuration

Option 2 Overview

- Aimed at a New Frontiers sized mission concept
- Design addressed three of four areas of scientific interest
 - Atmospheric evolution
 - Atmosphere-lake interaction
 - Lake chemistry
- Reaches Kraken Mare before sunset to enable DTE com
 - Required a bi-prop system and over 2000 kg of fuel
 - 6 year cruise
- Two ASRGs on the floater
 - Also provide power to carrier during cruise
- Requires X-Band DTE link due to Titan atmospheric attenuation
- Requires Atlas 551 or equivalent

Option 2 - Surface Configuration

Option 3 Overview

- Aimed at a New Frontiers sized mission concept
- Design addressed two of four areas of scientific interest
 - Atmospheric evolution
 - Lake chemistry

Reaches Kraken Mare after sunset

data relay is required

- Over 9 year cruise
- Two ASRGs on the relay spacecraft
- Requires an Atlas 401 or equivalent

Option 3 - Surface Configuration

Option 4 Overview

- Aimed at a New Frontiers sized mission concept
- Design addressed two of four areas of scientific interest
 - Atmospheric evolution
 - Lake chemistry
- Reaches Kraken Mare after sunset
 data relay is required
 - Over 9 year cruise
- Two ASRGs on the relay spacecraft
- Requires an Atlas 401 or equivalent

Option 4 - Surface Configuration

2016 New Frontiers Study

- Oceanus proposal to NF developed concept for battery powered sea probe that would operate with flyby orbiter/relay
 - Similar to Option 4 of Decadal study

Probe Architecture Drivers

- Low mass/cost
 - Mass impacts orbiter design, impacts cost modeling
 - Ease of assembly and test
- EDL
 - Requirement to take upper atmosphere measurement at ~100 km
 - Need to minimize descent time to maximize time in sea
 - Minimize landing ellipse to safely fit in Kraken Mare
 - Splashdown load should be <20 g for mass spectrometer instrument
- Thermal
 - Need to minimize need for survival heating during 30 day coast period
 - Heat leak to the sea must be minimized (goal of <100 W/m2)
- Surface stability
 - Probe must be buoyant and stable for range of possible sea densities (500-630 g/cm3)
- Integration
 - Accommodate sample inlets for atmosphere and lake
 - Accommodate camera for descent and context imaging

Notional EDL Sequence

Architecture Evolution

Proposed Internal Configuration

Buoyancy

Float Level, minimum sea density (500 kg/m³)

Float Level, maximum sea density (630 kg/m³)

Technologies

- Studies made maximum use of existing technologies
- Areas identified as needing development
 - Liquid sampling system for lake (floater)
 - Solid sampling system for lake bed (submersible)
- Further areas that would enhance mission feasibility
 - Low temperature electronics
 - Low temperature batteries
 - Miniaturized avionics
 - Miniaturized instruments

jpl.nasa.gov